首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1496篇
  免费   208篇
  国内免费   22篇
  2023年   39篇
  2022年   56篇
  2021年   136篇
  2020年   136篇
  2019年   112篇
  2018年   122篇
  2017年   86篇
  2016年   65篇
  2015年   69篇
  2014年   129篇
  2013年   131篇
  2012年   71篇
  2011年   69篇
  2010年   44篇
  2009年   65篇
  2008年   80篇
  2007年   53篇
  2006年   41篇
  2005年   33篇
  2004年   23篇
  2003年   28篇
  2002年   13篇
  2001年   14篇
  2000年   5篇
  1999年   7篇
  1998年   7篇
  1997年   12篇
  1996年   13篇
  1995年   8篇
  1994年   8篇
  1993年   3篇
  1992年   7篇
  1991年   7篇
  1990年   6篇
  1989年   2篇
  1988年   6篇
  1987年   6篇
  1986年   2篇
  1985年   6篇
  1984年   2篇
  1982年   1篇
  1981年   2篇
  1979年   1篇
排序方式: 共有1726条查询结果,搜索用时 62 毫秒
81.
The purpose of this study was to validate low radiation dose, contrast‐enhanced, multi‐detector computed tomography (MDCT) as a non‐invasive method for measuring ovarian volume in macaques. Computed tomography scans of four known‐volume phantoms and nine mature female cynomolgus macaques were acquired using a previously described, low radiation dose scanning protocol, intravenous contrast enhancement, and a 32‐slice MDCT scanner. Immediately following MDCT, ovaries were surgically removed and the ovarian weights were measured. The ovarian volumes were determined using water displacement. A veterinary radiologist who was unaware of actual volumes measured ovarian CT volumes three times, using a laptop computer, pen display tablet, hand‐traced regions of interest, and free image analysis software. A statistician selected and performed all tests comparing the actual and CT data. Ovaries were successfully located in all MDCT scans. The iliac arteries and veins, uterus, fallopian tubes, cervix, ureters, urinary bladder, rectum, and colon were also consistently visualized. Large antral follicles were detected in six ovaries. Phantom mean CT volume was 0.702±SD 0.504 cc and the mean actual volume was 0.743±SD 0.526 cc. Ovary mean CT volume was 0.258±SD 0.159 cc and mean water displacement volume was 0.257±SD 0.145 cc. For phantoms, the mean coefficient of variation for CT volumes was 2.5%. For ovaries, the least squares mean coefficient of variation for CT volumes was 5.4%. The ovarian CT volume was significantly associated with actual ovarian volume (ICC coefficient 0.79, regression coefficient 0.5, P=0.0006) and the actual ovarian weight (ICC coefficient 0.62, regression coefficient 0.6, P=0.015). There was no association between the CT volume accuracy and mean ovarian CT density (degree of intravenous contrast enhancement), and there was no proportional or fixed bias in the CT volume measurements. Findings from this study indicate that MDCT is a valid non‐invasive technique for measuring the ovarian volume in macaques. Am. J. Primatol. 72:530–538, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
82.
After gradually moving away from preparation methods prone to artefacts such as plastic embedding and negative staining for cell sections and single particles, the field of cryo electron microscopy (cryo‐EM) is now heading off at unprecedented speed towards high‐resolution analysis of biological objects of various sizes. This ‘revolution in resolution’ is happening largely thanks to new developments of new‐generation cameras used for recording the images in the cryo electron microscope which have much increased sensitivity being based on complementary metal oxide semiconductor devices. Combined with advanced image processing and 3D reconstruction, the cryo‐EM analysis of nucleoprotein complexes can provide unprecedented insights at molecular and atomic levels and address regulatory mechanisms in the cell. These advances reinforce the integrative role of cryo‐EM in synergy with other methods such as X‐ray crystallography, fluorescence imaging or focussed‐ion beam milling as exemplified here by some recent studies from our laboratory on ribosomes, viruses, chromatin and nuclear receptors. Such multi‐scale and multi‐resolution approaches allow integrating molecular and cellular levels when applied to purified or in situ macromolecular complexes, thus illustrating the trend of the field towards cellular structural biology.  相似文献   
83.
The authentic standards 2-(cyclopropanecarboxamido)-N-(4-methoxypyridin-3-yl)isonicotinamide (4a) and 2-(cyclopropanecarboxamido)-N-(4-(4-methoxyphenyl)pyridin-3-yl)isonicotinamide (7a), and their corresponding precursors 2-(cyclopropanecarboxamido)-N-(4-hydroxypyridin-3-yl)isonicotinamide (4b) and 2-(cyclopropanecarboxamido)-N-(4-(4-hydroxyphenyl)pyridin-3-yl)isonicotinamide (7b) were synthesized from methyl 2-aminoisonicotinate and cyclopropanecarbonyl chloride with overall chemical yield 47% in three steps, 22% in four steps, 40% in three steps, and 17% in four steps, respectively. The target tracers 2-(cyclopropanecarboxamido)-N-(4-[11C]methoxypyridin-3-yl)isonicotinamide ([11C]4a) and 2-(cyclopropanecarboxamido)-N-(4-(4-[11C]methoxyphenyl)pyridin-3-yl)isonicotinamide ([11C]7a) were prepared from the precursors (4b and 7b) with [11C]CH3OTf through O-[11C]methylation and isolated by HPLC combined with SPE in 40–50% radiochemical yield, based on [11C]CO2 and decay corrected to end of bombardment (EOB). The radiochemical purity was >99%, and the specific activity (SA) at EOB was 370–1110 GBq/μmol with a total synthesis time of ~40-min from EOB.  相似文献   
84.
85.
Metatarsal stress fracture is a common injury observed in athletes and military personnel. Mechanical fatigue is believed to play an important role in the etiology of stress fracture, which is highly dependent on the resulting bone strain from the applied load. The purpose of this study was to validate a subject-specific finite element (FE) modeling routine for bone strain prediction in the human metatarsal. Strain gauge measurements were performed on 33 metatarsals from seven human cadaveric feet subject to cantilever bending, and subject-specific FE models were generated from computed tomography images. Material properties for the FE models were assigned using a published density-modulus relationship as well as density-modulus relationships developed from optimization techniques. The optimized relationships were developed with a ‘training set’ of metatarsals (n = 17) and cross-validated with a ‘test set’ (n = 16). The published and optimized density elasticity equations provided FE-predicted strains that were highly correlated with experimental measurements for both the training (r2  0.95) and test (r2  0.94) sets; however, the optimized equations reduced the maximum error by 10% to 20% relative to the published equation, and resulted in an X = Y type of relationship between experimental measurements and FE predictions. Using a separate optimized density-modulus equation for trabecular and cortical bone did not improve strain predictions when compared to a single equation that spanned the entire bone density range. We believe that the FE models with optimized material property assignment have a level of accuracy necessary to investigate potential interventions to minimize metatarsal strain in an effort to prevent the occurrence of stress fracture.  相似文献   
86.
87.
In this work, exhaustive characterizations of 3D geometries of LiNi1/3Mn1/3Co1/3O2 (NMC), LiFePO4 (LFP), and NMC/LFP blended electrodes are undertaken for rational interpretation of their measured electrical properties and electrochemical performance. X‐ray tomography and focused ion beam in combination with scanning electron microscopy tomography are used for a multiscale analysis of electrodes 3D geometries. Their multiscale electrical properties are measured by using broadband dielectric spectroscopy. Finally, discharge rate performance are measured and analyzed by simple, yet efficient methods. It allows us to discriminate between electronic and ionic wirings as the performance limiting factors, depending on the discharge rate. This approach is a unique exhaustive analysis of the experimental relationships between the electrochemical behavior, the transport properties within the electrode, and its 3D geometry.  相似文献   
88.
目的:研究光学相干断层成像术(OCT)在近视眼视网膜神经纤维层(RNFL)厚度测量中的应用价值。方法:选择2016年1月到2016年5月在医院就诊的近视患者73例(138眼)纳入此次研究,根据近视情况将患者分为低度近视组(-0.30D~-3.00D)共26例(48眼)、中度近视组(-3.01~-6.00D)共24例(47眼)及高度近视组(-6.00D)共23例(43眼)。另选同期在医院体检(视力正常)的健康志愿者25例(45眼)作为对照组,对比各组不同象限的RNFL厚度,屈光度及眼轴长度,分析近视眼各象限的RNFL厚度与患者屈光度和眼轴长度的相关性。结果:高度近视组的上方象限、下方象限以及鼻侧象限的RNFL厚度均明显低于对照组及中度近视组,中度近视组的下方象限及鼻侧象限的RNFL厚度均明显低于对照组,低度近视组鼻侧象限的RNFL厚度明显低于对照组,差异均有统计学意义(均P0.05)。近视组的屈光度及眼轴长度均明显大于对照组,且高度近视组均明显大于中度近视组与低度近视组,中度近视组均明显大于低度近视组,差异均有统计学意义(均P0.05)。根据Pearson法分析相关性可知,近视眼患者上象限、下象限、鼻侧象限的RNFL厚度与其屈光度及眼轴长度均呈负相关。结论:利用OCT技术检测近视眼RNFL厚度时,应考虑屈光度及眼轴长度可能造成的影响,综合进行分析判断,以获得最佳检测数值。  相似文献   
89.
We demonstrate the use of the near‐infrared attenuation coefficient, measured using optical coherence tomography (OCT), in longitudinal assessment of hypertrophic burn scars undergoing fractional laser treatment. The measurement method incorporates blood vessel detection by speckle decorrelation and masking, and a robust regression estimator to produce 2D en face parametric images of the attenuation coefficient of the dermis. Through reliable co‐location of the field of view across pre‐ and post‐treatment imaging sessions, the study was able to quantify changes in the attenuation coefficient of the dermis over a period of ~20 weeks in seven patients. Minimal variation was observed in the mean attenuation coefficient of normal skin and control (untreated) mature scars, as expected. However, a significant decrease (13 ± 5%, mean ± standard deviation) was observed in the treated mature scars, resulting in a greater distinction from normal skin in response to localized damage from the laser treatment. By contrast, we observed an increase in the mean attenuation coefficient of treated (31 ± 27%) and control (27 ± 20%) immature scars, with numerical values incrementally approaching normal skin as the healing progressed. This pilot study supports conducting a more extensive investigation of OCT attenuation imaging for quantitative longitudinal monitoring of scars.

En face 2D OCT attenuation coefficient map of a treated immature scar derived from the pre‐treatment (top) and the post‐treatment (bottom) scans. (Vasculature (black) is masked out.) The scale bars are 0.5 mm.  相似文献   

90.
Multiphoton tomography (MPT) is a prospective tool for imaging the skin structure. Aiming to increase the probing depth, a comparative ex vivo study of optical clearing of porcine ear skin was performed by using two optical clearing agents (OCAs), i.e., glycerol and iohexol (OmnipaqueTM) at different concentrations, which exhibit different osmotic properties. The results show that a topical application of glycerol or OmnipaqueTM solutions onto the skin for 60 min significantly improved the depth and contrast of the MPT signals. By utilizing 40%, 60% and 100% glycerol, and 60% and 100% OmnipaqueTM it was demonstrated that both agents improve autofluorescence and SHG (second harmonic generation) signals from the skin. At the applied concentrations and agent time exposure, glycerol is more effective than OmnipaqueTM. However, tissue shrinkage and cell morphology changes were found for highly concentrated glycerol solutions. OmnipaqueTM, on the contrary, increases the safety and has no or minimal tissue shrinkage during the optical clearing process. Moreover OmnipaqueTM allows for robust multimodal optical/X‐ray imaging with automatically matched optically cleared and X‐ray contrasted tissue volumes. These findings make OmnipaqueTM more prospective than glycerol for some particular application.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号